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Problem 1
We observe n “marks” x1, x2, . . . , xn in the unit interval, Nback = A/10 from the
background exponential density

f0 (x) = 10e−10x

and Nsig = D
√
2πσ2 = 0.0752D from a normal density with unknown mean E

and known variance σ = 0.03,

f1 (x;E) =
1√
2πσ2

e−
1
2 (

x−E
σ )

2

.

We want to test the null hypothesis H0 : D = 0 versus the alternative
H1 : D > 0, and also to provide estimates of D and E and standard errors of
these estimates.

The situation above can be thought of as observing an independent sample
of size n from the mixture density

f (x;D,E) =

(
n− cD
n

)
f0 (x) +

cD

n
f1 (x;E) (1)

where c =
√
2πσ2 = 0.0752. Let

(
D̂, Ê

)
the maximum likelihood estimates

of (D,E) in the model. Then we can test the null hypothesis H0 using the
maximum likelihood ratio statistic

L =

∏n
i=1 f

(
xi; D̂, Ê

)
∏n

i=1 f0 (xi)
, (2)

rejecting H0 for large values of L. In our submission, “large” was defined by
simulation of L under the null hypothesis, rather than from theoretical chi-
squared calculations.

“Lindsey’s method” [1] allows a restatement of the problem in terms of Pois-
son regression: we bin the data, say into 100 bins of width d = 0.01 on the unit
interval, letting

yk = #{xk values in kth bin}.
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Figure 1: Likelihood surfaces for a typical null (left) and non-null (right) data
sets. E varies along the x-axis, and the null proportion π0 = n−cD

n varies on
the y-axis.

Define µk (D,E) to be the expected value of yk under model 1, approximately

µk (D,E) = nd · f (mk;D,E) ,

where mk is the midpoint of bin k. Then the independent Poisson model for
the counts yk,

yk ∼ Poisson (µk (D,E)) , (3)

yields almost the same maximum likelihood estimates
(
D̂, Ê

)
as before, the

difference quickly becoming negligible as the bin width d goes to zero.
Model 3 is a two-parameter nonlinear Poisson regression. Figure 1 shows

two typical likelihood surfaces. The likelihood function (equation 1) can be
multimodal, so optimizing it requires some care. We found the maximum likeli-
hood estimates

(
D̂, Ê

)
using a simple grid search, and used the nonparametric

bootstrap to estimate the variability of our estimates.
Figure 2 shows the log likelihood ratios for the 20,000 supplied data sets,

plotted against the estimated signal location Ê. About 11% of the data sets
show signal at the 1% significance level. The figure suggests that the non-
null data sets were generated using 6 or 7 distinct values of E. In the three
detection scenarios (D,E) = (1010.0, 0.1), (137.0, 0.5), (18.0, 0.9), our test has
power 34.83%, 43.35%, 1.75% at the 1% significance level. The third scenario
is particularly challenging. Taking D = 18.0 corresponds to observing a single
non-null point. Even though the non-null point has a high mean, E = 0.9, it is
still difficult to distinguish this situation from the null: given 1000 marks from
the null f0, we have a 12% chance of seeing at least one mark above 0.9.
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Figure 2: Log likelihood ratios for the 20,000 data sets, plotted against the
estimate signal location Ê. The red line shows the 1% significance rejection
threshold, obtained through independent simulations.
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Figure 3: Histogram of background, signal draws, with approximating Beta
distributions.

Problem 2
We again observe n marks x1, . . . , xn in the unit interval, n1 from “background
1,” n2 from “background 2,” and n3 from the signal. We are not given the
parametric forms of the background and signal distributions, but are given 5000
draws from each. We wish to test the null hypothesis H0 : n3 = 0 against the
alternative H0 : n3 > 0.

Although the background and signal distributions are unknown, we can es-
timate them using the draws that we are given. We estimated the background
and signal densities using Beta distributions. Figure 3 shows the draws from
the three distributions and the fitted Beta distributions.

We can again think of this problem as observing n independent samples from
the mixture density

f (x;n1, n2, n3) =
n1
n
f1 (x) +

n2
n
f2 (x) +

n3
n
f3 (x) , (4)

where f1 and f2 are the background 1 and 2 densities, and f3 is the signal
density. Suppose we have maximum likelihood estimates of ni,

(
n̂01, n̂

0
2

)
, under

the null hypothesis n3 = 0, and estimates (n̂1, n̂2, n̂3) without any restriction
on n3. We can test the null hypothesis H0 using the generalized likelihood ratio
statistic

L =

∏n
i=1 f (xi; n̂1, n̂2, n̂3)∏n
i=1 f (xi; n̂

0
1, n̂

0
2, 0)

,

rejecting for large values of L. In our submission, we defined “large” by simu-
lating from the null, using the distributions for n1 and n2 given in the problem
statement and the estimated Beta distributions.

The mixture density 4 is easier to fit than the mixture model for problem 1,
since it has no unknown nuisance parameters. We found the null MLEs

(
n̂01, n̂

0
2

)
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and the unrestricted MLEs (n̂1, n̂2, n̂3) using the standard EM algorithm for
mixture models.

About 13% of the 20,000 supplied data sets show signal at the 1% significance
level. Our test has 84% power at the 1% significance level in the problem’s
power testing scenario, with n1 ∼ N

(
900, 1002

)
, n2 ∼ N

(
100, 1002

)
, truncated

at zero, and “an expected total signal rate of 75 events”, which we took to mean
n3 ∼ Poisson (75).
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